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A numerical model is presented for the simulation of complex fluid flows with
free surfaces. The unknowns are the velocity and pressure fields in the liquid region,
together with a function defining the volume fraction of liquid. Although the math-
ematical formulation of the model is similar to the volume of fluid (VOF) method,
the numerical schemes used to solve the problem are different. A splitting method
is used for the time discretization. At each time step, two advection problems and
a generalized Stokes problem are to be solved. Two different grids are used for the
space discretization. The two advection problems are solved on a fixed, structured
grid made out of small rectangular cells, using a forward characteristic method. The
generalized Stokes problem is solved using a finite element method on a fixed, un-
structured mesh. Numerical results are presented for several test cases: the filling of
an S-shaped channel, the filling of a disk with core, the broken dam in a confined
domain. (© 1999 Academic Press

1. INTRODUCTION

Numerical simulation of free surface flows is of great interest for industrial applicatic
such as casting, welding, injection, or extrusion processes. In many interesting situat
the motion of the free surface is complex, making front-tracking methods [15] or Lagranc
techniques [10, 11, 22] difficult to handle. Indeed, in the frame of Lagrangian methods
nodes of the mesh are moved according to the fluid velocity, the mesh is severely distc
and remeshing becomes unavoidable. Arbitrary Lagrangian—Eulerian methods [13, 1¢
27, 32] remedy this situation by allowing the internal nodes to move independently from
fluid velocity. However, the selection of the mesh velocity is nontrivial for complex flow

An alternative is to consider the Eulerian approach, which consists in using a fixed n
but adding an unknown functianwhose values characterize the volume fraction of liqui
and which satisfies an advection equation

e
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wherev is the velocity field of the fluid. The most famous numerical implementation c
this model is the so-called volume of fluid (VOF) method, which was originally devise
for finite volumes [12] and recently extended to finite elements [19]. The values of t
function ¢ are one or zero and represent the presence or absence of liquid. In orde
remedy the numerical diffusion induced by the advection of this discontinuous fuggtion
the pseudo-concentration method (PCM) was developed [3, 4, 17, 21, 34]. The fumctic
then varies continuously and the free surface corresponds to a preset isovalue. Howeve
method can only be applied to situations when the velocity fiégdccomputed in the whole
cavity, that is to say when the interface between two fluids is considered (for instance,
multiphase flows [35]).

Finally, let us mention that level set techniques [31] have also been successfully
plemented for solving free surface flows. However, the mathematical model is differ
since the unknown functiop satisfies a Hamilton—Jacobi equation, instead of an advectic
equation.

In this paper, the mathematical model is borrowed from the VOF method, and the volu
fraction of liquid is used to determine the position of the free surface. However, the numer;
treatment of the model is different, the features being the following. A splitting algorith
is used to decouple advection and diffusion phenomena. Advection phenomena (inclu
the motion of the volume fraction of liquid and the motion of the fluid) are solved usir
a fixed, structured grid of rectangular cells and a forward characteristic method. On
other hand, diffusion phenomena (more precisely a generalized Stokes problem) are sc
using finite element techniques on a fixed, unstructured mesh. Thus, our numerical me
makes use of the nice features of structured grids in order to solve the advection phenor
and takes advantage of finite elements in order to solve diffusion phenomena. Agail
should be stressed that the numerical treatment of advective terms is different than \
is done in VOF-like methods. Our model uses a forward characteristic method instea
a finite volume (or finite difference) method. The main advantage is that the methoc
unconditionally stable with respect to the Courant—Friedrichs—Lewy (CFL) condition, th
allowing larger time steps to be used. Numerical results are presented for various t
dimensional situations. Our final goal is to develop a three-dimensional model, and
believe our numerical method can be easily extended to three-dimensional situations.

The structure of the paper is the following. In the next section, the governing equations
boundary conditions are presented. In the third section our splitting algorithm is propos
The fourth section is devoted to the details of space discretization. In Section five, numer
simulations are compared to experiments and validate the model. Finally, a conclusion
perspectives are proposed.

2. THE MATHEMATICAL MODEL

2.1. Governing Equations

The model presented in this section mainly corresponds to the one presented in the ori
VOF method [12]. However, as this will be explained in Sections 3 and 4, the numeri
treatment of the model is different.

Let A be a cavity ofR? in which the fluid must be confined, and [Bt> 0 be the final
time of the simulation. For any given tintelet (t) denote the region occupied by the
liquid. Finally, let Q7 be the space—time domain containing the liquid andtetbe the
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FIG. 1. Calculation domain for the broken dam problem in a confined domain. At initial time, the fluid is
rest on the left part of the cavity. It is then free to move and hits the boundary.

space—time free surface between the liquid and the surrounding gas. These notatiol
reported in Fig. 1 for the broken dam problem in a confined domain.

Itis assumed that the velocity field Qr — R? and the pressure field: Qr — R satisfy
the time-dependent, incompressible Navier—Stokes equations in conservative form a
the presence of a gravity fiefg] that is,

Y . .
pﬁ+p(V~V)V—2MdlvD(V)+V|O=pg in Qr, 1)
dvv=0 inQr, (2)

whereD(v) = %(Vv+ vv') is the rate of deformation tensor.

Let ¢: A x (0, T) > R be the characteristic function of the liquid domady. The
function¢ equals one if liquid is present and zero if it is not. Thug, t) represents the
volume fraction of liquid at poink and timet. In order to describe correctly the kinematic:s
of the free surfac&+, the functionp must satisfy

2;—(:erV(p:O onXr, 3
in a weak sense. From a Lagrangian point of view, the fungtios constant along the
trajectories of the fluid particles. More preciseh(X (1), t) = ¢(X(0), 0), where X(t) is
the trajectory of a fluid particle, thus satisfi€qt) = v(X(t), t). This interpretation will be
used to solve (3), as described in the next section.

The model unknowns anre p, ¢ and satisfy Egs. (1)—(3). The model is thus complet
provided initial and boundary conditions are prescribed.

2.2. Initial and Boundary Conditions

The initial conditions are the following. At initial time, the volume fractigns given,
which defines the liquid region at initial time,

Q0 ={xeAox 0 =1}

see Fig. 1 for notations. The initial velocity fields then prescribed i€ (0). Let us now
turn to the boundary conditions for the velocity field. It is assumed that no forces are ac
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on the free surface (capillary forces and forces due to external pressure of the surroun
gas are neglected); thus the stress is zero on the free surface,

—pn+2uD(v)n=0 onZXy,

wheren is the outward unit normal of the free surface. On the boundary of the liquid regi
being in contact with the walls (that is to say the boundarg pgee Fig. 1), three kinds of
boundary conditions can be considered: Dirichlet boundary conditions (correspondin
noslip or inflow conditions), slip boundary conditions, or zero force boundary conditior
More precisely, if the fluid pushes against the wall, then slip boundary conditions «
imposed; that is, zero normal velocity and zero tangent stress

if (—pn+2uDV)n)-n<0 then v.n=0 and (—pn+ 2uD()n)-t =0,

wheret is a unit vector orthogonal to. On the other side, if the fluid does not push agains
the wall, then the stress is zero:

if (—pn+2uD(v)n)-n>0 then —pn+2uD(v)n=0.

This formulation of the boundary conditions prevents the fluid from sticking to the walls

3. TIME DISCRETIZATION: A SPLITTING ALGORITHM

A splitting algorithm is used to solve problems (1)—(3), allowing advection and diffusic
phenomena to be decoupled.

Let 0=t <t'<t?< ... <tN =T be a subdivision for the time variableand define
" =t"! —t"tobethenthtimestepn=0, 1,2, ..., N — 1. Givenanintegar, assume that
approximationsy"~t, v=1, Q"1 of ¢(t" ), v(t"1), Q(t"1), respectively, are known.
Then the approximationg”, v", Q" of ("), v(t"), Q(t"), respectively, are computed as
follows.

3.1. Advection Step
Solve between tim&'~! andt" the two advection problems

8W—i-(w Vw =0
ot o

oy
— +w-Vy =0,
at * v

with initial conditions
W(tnfl) — anl’
YA ="

If the effect of the boundary of the cavity is not considered, these two problems car
be solved exactly, using the characteristic method [24-26] since the trajectories of
velocity fieldw are straight lines. Indeed, they are giverdtiyt) =w(X(t), t), but sincew
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is constant along the trajectories, we ha¢/gt"1) =w(X (t"1), t" 1) = v~ (X" 1)).
Let v"—2 denote the solution of the first advection problem at ttl‘hé.e.,v“‘% =w(t"),
and letp" denote the solution of the second advection problem atttfiriee., " = v (t").
We thus have

V3 (x + T L (0)) = vix), (4)

" (x + "V ) = 9" (), (5)
for all x belonging ta"~*. The liquid region at time" is then defined as the following:
Q"={yeA;¢"(y) =1}

Note that an adaptive time procedure has been added in order to prevent the trajector
the liquid (the characteristics) from crossing the boundary of the cavity

3.2. Diffusion Step

Once the advection step has been performed, an intermediate vell?f(ﬁtjs available
on the current liquid domaif". It then remains to solve the following generalized Stoke
problem,

il _Vn—%
p———7— — 2ndiv DV +Vp"=pg inQ", (6)
T

divv"=0 inQ", @

with the boundary conditions described in Section 2.2 (Dirichlet, slip, or zero force bounc
conditions).

Let us consider this splitting algorithm in the case when the free surface probler
skipped, that is to say whef2(t) = A for all t. The model then reduces to the classi
cal Navier—Stokes equations and the splitting algorithm is closely linked to the so-ca
characteristic—-Galerkin method [24—26]. The major difference comes from the fact tha
the characteristic—Galerkin method, the trajectories of the fluid particles are compute
the direction opposite to the flow. From these considerations, we expect our algorithi
be O(t) convergent, where is the largest time step.

4. SPACE DISCRETIZATION: CELLS AND FINITE ELEMENTS

Our splitting algorithm allowed advection and diffusion phenomena to be decouplec
order to take advantage of this situation, two different grids are used for space discretize
Since finite element techniques are well suited for solving (6) and (7) a fixed, unstructt
mesh ofA (the region in which the fluid is confined) is generated. On the other hand, solv
an advection problem with the characteristic method is an easy task on structured grit
rectangular grid containing, made out of small rectangular cells, will also be needed; s
Fig. 2.
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FIG. 2. The two grids used for the computations. The structured grid of small cells is used for advect
phenomena. The finite element unstructured mesh is used for diffusion phenomena.

4.1. Advection Step

Assume that the grid is made out of rectangular cells, each cell being labeled by indi
ij,as shownin Fig. 3. Lep{}*l andvi'}*l be the approximate value gfandv at the center
of cell numbeiij at timet"~1. According to (4) and (5), the advection step on cell numbe
ij consistsin advec:tingg;{}*1 andvi'}*l by r“‘lv{}*l and then projecting the values on the
grid. An example of cell advection and projection is presented in Fig. 3.

Since this algorithm is closely related to the characteristic—Galerkin method [24-2
it is unconditionally stable with respect to the Courant—Friedrichs—Lewy (CFL) conditic
and O(t + h?/7) convergents being the largest time step ahdeing the cells spacing.
However, this algorithm has two drawbacks. Indeed, numerical diffusion is introduced wt
projecting the values of the advected cells on the grid. Moreover, if the time step is too la
two cells may arrive at the same place, producing numerical (artificial) compression;
Fig. 4.

/ T if
index j

n—1

Pij

index 1

FIG. 3. An example of advection 0@{}‘1 by r”*lvi”j‘1 and projection on the grid. The advected cell is
represented by the dashed lines. The four cells containing the advected cell receive a fra,o{}i’énan‘cording
to the position of the advected cell.
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FIG. 4. An example of numerical (artificial) compression for the broken dam problem in a confined doma

In order to remedy this situation, two features have been added. The first aims to re
diffusion and is inspired from the SLIC algorithm [1, 23]. The second removes artific
compression. These two features can be understood as post-processing techniques il
to enhance the quality of the computed volume fracion

Reducing numerical diffusion: a SLIC algorithmin order to illustrate numerical dif-
fusion, a simple advection situation is considered. A rectangular liquid domain is adve
in the unit square. The horizontal velocity equals one in the whole liquid region. The ti
step is half the space step. Figure 5 represents the computed vajuaierftwo time steps
using the advection algorithm described above. Numerical diffusion is clearly very lal
More precisely, the smaller the time steps, the greater their number, the greater num
diffusion. This is a well-known feature of the characteristic method: numerical diffusi
is high with small time steps. Indeed, experimental and theoretical results [24—-26] |
shown that the convergence rate of characteristic-like methods depends on the CFL nu
(velocity times the time step divided by the cells spacing). A good choice generally con:
in choosing CFL numbers between 1.5 and 5. However, in the frame of free surface fls
an important point prevents the use of large CFL numbers. Indeed, when the time st
high, the cells may either be advected outside the cavity induce artificial compression;
see Fig. 4. Thus, a time stepping adjustment procedure has been added. The time ste
computed so that all the cells remain inside the casityvioreover, a simple line interface
calculation (SLIC) algorithm [1] has been implemented in order to reduce numerical di
sion. The SLIC method allows the position of the free surface to be inside a cell. In Fig
numerical results are reported when using the SLIC method and should be compar
those of Fig. 5. Clearly, after two time steps, numerical diffusion has been suppressec

Reducing artificial compression: a decompression algorithk¥e now present an al-
gorithm to reduce artificial compression. When the computed vaifiesre greater than

1)1 3| 1] 3 il a| 1]
1)1 3| 1] 2 i) 4|41
L]t 5| 1] 3 il 4] a1
L]t 2] 1] 3 i) e| 1|3

FIG.5. A simple advection situation. The horizontal velocity equals one. The time step is half the space
Computed values af are shown after two time steps.
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FIG. 6. Same as Fig. 5, but using the SLIC algorithm. After two time steps, the position of the liquid regic
is exact.

one, a fraction of the liquid contained in the cavity is lost. The aim of the decompress
algorithm is to produce new valug§ which are between zero and one.

Consider the test case of the broken dam in a confined domain; see Fig. 1. In Fig
fictitious values ofp} are reported at initial time and after a few time steps. Clearly, th
cells close to the bottom right corner have valyggreater than one. Moreover, numerical
diffusion has occurred and some of the cells have vafjebetween zero and one. The
decompression algorithm is then as follows. At each time step, all the cells having val
@i, greater than one (strictly) or between zero and one (strictly) are sorted accordin
their valuesp]} . This can be done in an efficient way using quick sort algorithms that a
nowadays available on any computer. As shown in Table 1, the cells having values
greater than one are called the dealer cells, whereas the cells having gfalbesveen
zero and one are called the receiver cells. The decompression algorithm then consis
moving the fraction of liquid in excess in the dealer cells to the receiver cells. For instan
in the situation corresponding to Fig. 7, the excess of liquid of the first dealer cell, cell (8,
is poured into the first receiver cell, cell (8, 2), then into the second receiver cell (8, 3). N
that if all the receiver cells are full but some liquid is still in excess in the dealer cells, th
this excess of liquid is stored in a dedicated buffer and is introduced at the next time s
Figure 8 shows the new valug§ obtained after the decompression algorithm is performec
Again, this decompression algorithm is very easy to implement (it requires mainly a call
a quick sort routine) and we believe it can be used as is for three-dimensional computati

4.2. From Cells to Finite Elements

Once valueg|} andv;; have been computed on the cells, values have to be extrapola
at the nodes of the finite element mesh. Then, from these values, the new liquid region

=1 i=28
j=4 1.0[1.0 (1.0 0.3-6-57
1.0 1.0 1.0 0. /&Q 0.8
17
1.0[1.0 (1.0 0.1]0.2//0.9
7=1 1.01.0 |1.0 1.0(1.0|1.0|1.0/10(1.0|1.1 |12

FIG. 7. The broken dam problem in a confined domain. Computed valug’ af initial time (left) and after
a few time steps (right).
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TABLE 1
The Decompression Algorithm: Sorting of the Cells inthe
Situation Corresponding to Fig. 7, where the Dealer Cells
(left) Give Their Surplus of Liquid to the Receiver Cells

(right)
Dealer cellsyp]} > 1 Receiver cells: & ¢} <1
Indexi Index j @5 Indexi Index j @
8 1 12 8 2 0.9
7 1 11 8 3 0.8

7 3 0.6

be computed, and problems (6) and (7) will be solved. For any internal node (vErtex)
the finite element mesh lefs be the approximate value gfat timet". LetC{} be the cell

whose center is nearest to noBesee Fig. 9. Then, the value @f is computed from the
following formula:

1
¢op = 1—6(4§0ir,]j + 2001+ 2000 + 200+ 20 el
+ </’in+1,j—1 + Win+1,j+1 + <pi”71’j+1).

This formula is borrowed from multigrid techniques and is a nine-point restriction opere
[9]. When the nodd® belongs to the boundary of the calculation domain, a similar formu
can be derived, involving only the cells which are inside the calculation domain. Fina
the same method is used to compute the momem&vﬁ,‘”z. Then, dividing byg}, the

value ofvy /2 is obtained.

4.3. Diffusion Step

Once values of the velocity field~2 and the volume fractiop” are available at the
vertices (nodes) of the finite element mesh, the liquid region is defined as follows.
element of the mesh is said to be liquid if (at least) one of its vertRdsas a value
¢p > 0.5. The computational domain used for solving (6) and (7) is then defined to be
union of all liquid elements; see Fig. 10.

075
08)0-6] 1.0
0(/1}2/ 1.0
1.0/1.0{1.0]1.0]/ 1.0] 1.0| 1.0| 1.0

FIG. 8. Values ofy]} after the decompression algorithm.
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Oyt Cise \m/

FIG. 9. The nine cells involved in the computation of the volume fracticet nodeP.

Note that a velocity has to be guessed for each node hg¥¥nrg0, but belonging to a
liquid element. The velocity is then clearly computed from the values of the neighbori
liquid nodes. Also note that if a cell has a valpfe greater than zero, but belongs to a finite
element which is not liquid, then it is eliminated from the computations and a small amol
of liquid is lost. When this situation occurs, the corresponding amount of liquid is stor
in a dedicated buffer and is introduced at the next time step, during the decompres:
algorithm of Section 4.1.

Let us now turn to the finite element techniques used for solving (6) and (7), the bound
conditions being those described in Section 2.2 (Dirichlet, slip, or zero force bound
conditions). Two finite elements methods have been employed, the first being the pop
Q11— Py element (continuous, piecewise bilinear velocity on quadrangles, constant press
[6, 28, 29]. Penalty methods are used to eliminate the pressure (with, as usual, red
quadrature formula) and to implement the slip boundary conditions. The degrees of free
are the velocity components at each node of the finite element mesh. At each time st
linear system has to be solved in order to obtain the velocity components at each noc

FIG. 10. Anexample of the computation of the liquid region, given the valugsatfthe vertices of the finite
element mesh.
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the finite element mesh. The second finite element we have implementedA4 theP1
stabilized element (continuous, piecewise linear velocity and pressure on triangles, p
Galerkin/least-squares stabilization method) [7, 8, 33]. Then, the degrees of freedom a
velocity components and pressure at each node of the finite element mesh. Both these
element methods are implicit ar@(H? 4+ ) convergent (in the.? norm), H being the
finite elements spacing andthe greatest time step. At the moment, all the linear syster
are solved using direct methods. We are looking forward to using the P1-P1 stabilized f
element for three-dimensional computations, with a splitting method to decouple velo
and pressure computations and conjugate gradient solvers.

5. NUMERICAL RESULTS

In this section, the efficiency of our numerical model is demonstrated on three diffel
test cases.

5.1. The S-Shaped Channel

The first test case corresponds to water entering an S-shaped channel lying bet
two horizontal planes, so that gravity has no effect. Experimental and numerical result
available [30]. The dimensions of the channel af&t« 0.24 m, water is entering at velocity
8.7 m/s, and the density and viscosity are taken 06 000 kg/n{, « = 0.01 kg/(ms). This
complextest case enables us to validate the algorithms of Section 4.1 (SLIC, decompre:s
and to compare the two finite element formulations.

When the SLIC and the decompression algorithms are turned off, a large numbe
cells must be used to obtain precise results [5]. If the SLIC algorithm is turned on
decompression off, then numerical diffusion is reduced. However, the possible overlap
of cells (numerical compression) is not eliminated. Finally, the use of both algorithms all¢
coarse grids of cells to be used. Roughly speaking, the cell’s spacing can be chosen t
third of the finite element’s spacing. Then, the CPU time and the memory requirements
reduced.

We now compare the results obtained when using the two finite element formulatit
Two sets of results are presented, the first one corresponding @,the P, formulation
and the second one to tifg — P; stabilized method. The corresponding results are report
in Fig. 11. The time step was-10°s and 214« 303 rectangular cells were employed
The mesh data and the CPU time (on a 195 MHz R10000 SGI workstation) are report
Table 2. The CPU time is lower when using Q¢ — P, element, this being due to the fact
that the pressure is eliminated from the linear system. Note that most of the CPU tin
used for solving the linear system corresponding to the discretization of Stokes proble

TABLE 2
S-Shaped Channel: Mesh Data and CPU Time

Finite element Q- P P — P
Number of elements in the mesh 3359 6362
Max. number of degrees of freedom x2B095 3x 3453

CPU time (minutes) 16 96
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FIG. 11. S-shaped channel: numeric#, (— Py: left, Q; — Py: middle) and experimental (right) [30] results
at times 7.15, 25.3, 39.3, and 53.6 ms.

The Reynolds number is of order®@nd the flow is clearly turbulent. For computational
reasons (remember that our final goal is to develop a three-dimensional model) we dc
want to introduce a turbulence model. Moreover, the boundary conditions at the borde
the cavityA are slip conditions, except on the free surface and on the inlet. This explal
the fact that the fluid front obtained with our model is slightly faster than the experime
tal one.

Also, it must be mentioned that some of the air cavities observed in the experime
disappear in our simulations. We believe that this is due to the fact that the pressure o
surrounding gas is not taken into account. Nevertheless, the two simulations are close
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FIG. 12. Disk with core: the meshes.

experiments and similar to the numerical results reported in [30] when using the RIPI
code [14].

5.2. The Disk with Core

Consider the filling of a disk with a core, lying between two horizontal planes, so t
gravity has no effect. Experimental and numerical results are available [30]. The dimens
are 014 x 0.16 m, water is entering at velocity 18 m/s, and the density and viscosity .
taken to bep = 1000 kg/nd, 1« = 0.01 kg/(ms). For symmetry reasons, the computations &
performed on the half disk. In order to study the convergence of our model, three me
are used; see Fig. 12. The finite element is@ie— PO element and the relevant data ar
reported in Table 3. The convergence of our scheme is illustrated in Fig. 13. Again,
computed liquid regions match the experimental ones. Similar results have been obt:
when using thé®?1 — P1 stabilized element.

5.3. The Broken Dam Problem in a Confined Domain

Consider a rectangular water columag= 0.05715 m wide and 0.1143 m high. At initial
time, this water column is kept in the left side of a cavity 0.3 m wide and 0.1143 m high
a fictitious wall (a dam for instance). The wall is then removed (the dam collapses) anc
column is subject to vertical gravity and free to move. The gravity fielgl4s9.81 m/g

TABLE 3
Disk with Core: Numerical Data
Mesh Coarse Medium Fine
Number of elements 322 1288 5152
Number of cells 3% 74 64x 148 128x 296
Time step (s) 0.0002 0.0001 0.00005
Number of time steps 83 165 330

CPU time (minutes) <1 2 37
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FIG. 13. Disk with core: numerical results at times 8.8, 11.8, and 16.2 ms, for the three different mesh
(a) coarse grid, (b) medium grid, (c) fine grid, and (d) experimental results [30].

and the density and the viscosity of the fluid are: 1000 kg/nf, 1 = 0.5 kg/(ms). Three

meshes are used for this analysis, the data being reported in Table 4. Experimental

and numerical [10, 12, 13, 16] results are available. The position of the leading fluid fr

versus time is reproduced in Fig. 14. Again numerical results match the experiments.
Figure 15 represents the liquid region at several times, fo09:00.045 m cavity and

a rectangular water column@? x 0.03 m. It can be seen that the free surface has a wel

behaved undular shape.

TABLE 4
The Broken Dam Problem in a Confined Domain: Numerical Data

Mesh Coarse Medium Fine
Number of elements 3% 15 75x 30 150x 60
Number of cells 37 150 750x 300 1500x 600

Time step (s) 0.03 0.015 0.0075
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FIG. 14. The broken dam problem in a confined domain: dimensionless front position versus dimensior
time.

6. CONCLUSION

A numerical model for solving complex flows with free surfaces has been presen
The mathematical model is borrowed from the VOF method and makes use of the vol
fraction of liquid in order to compute the position of the free surface. However, the numer
schemes are different than those used in the VOF method. A splitting algorithm is use
decouple advection and diffusion phenomena. Advection is solved on a structured
made out of small rectangular cells. Diffusion is solved using a finite element method
an unstructured mesh.

Numerical results show the efficiency of this approach and the numerical results m
experimental ones. We are looking forward to including the effects due to the surroun
gas and surface tension [2] in order to improve the model.

However, the prime goal of our future research is to extend this model to three-dimensi
computations.

FIG.15. The broken dam problem in a confined domain: the liquid region at times 0.02, 0.05, 0.25, and 0.
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