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A numerical model is presented for the simulation of complex fluid flows with
free surfaces. The unknowns are the velocity and pressure fields in the liquid region,
together with a function defining the volume fraction of liquid. Although the math-
ematical formulation of the model is similar to the volume of fluid (VOF) method,
the numerical schemes used to solve the problem are different. A splitting method
is used for the time discretization. At each time step, two advection problems and
a generalized Stokes problem are to be solved. Two different grids are used for the
space discretization. The two advection problems are solved on a fixed, structured
grid made out of small rectangular cells, using a forward characteristic method. The
generalized Stokes problem is solved using a finite element method on a fixed, un-
structured mesh. Numerical results are presented for several test cases: the filling of
an S-shaped channel, the filling of a disk with core, the broken dam in a confined
domain. c© 1999 Academic Press

1. INTRODUCTION

Numerical simulation of free surface flows is of great interest for industrial applications
such as casting, welding, injection, or extrusion processes. In many interesting situations,
the motion of the free surface is complex, making front-tracking methods [15] or Lagrangian
techniques [10, 11, 22] difficult to handle. Indeed, in the frame of Lagrangian methods, the
nodes of the mesh are moved according to the fluid velocity, the mesh is severely distorted,
and remeshing becomes unavoidable. Arbitrary Lagrangian–Eulerian methods [13, 16, 20,
27, 32] remedy this situation by allowing the internal nodes to move independently from the
fluid velocity. However, the selection of the mesh velocity is nontrivial for complex flows.

An alternative is to consider the Eulerian approach, which consists in using a fixed mesh
but adding an unknown functionϕ whose values characterize the volume fraction of liquid
and which satisfies an advection equation

∂ϕ

∂t
+ v · ∇ϕ = 0,
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wherev is the velocity field of the fluid. The most famous numerical implementation of
this model is the so-called volume of fluid (VOF) method, which was originally devised
for finite volumes [12] and recently extended to finite elements [19]. The values of the
function ϕ are one or zero and represent the presence or absence of liquid. In order to
remedy the numerical diffusion induced by the advection of this discontinuous functionϕ,
the pseudo-concentration method (PCM) was developed [3, 4, 17, 21, 34]. The functionϕ

then varies continuously and the free surface corresponds to a preset isovalue. However, this
method can only be applied to situations when the velocity fieldv is computed in the whole
cavity, that is to say when the interface between two fluids is considered (for instance, for
multiphase flows [35]).

Finally, let us mention that level set techniques [31] have also been successfully im-
plemented for solving free surface flows. However, the mathematical model is different
since the unknown functionϕ satisfies a Hamilton–Jacobi equation, instead of an advection
equation.

In this paper, the mathematical model is borrowed from the VOF method, and the volume
fraction of liquid is used to determine the position of the free surface. However, the numerical
treatment of the model is different, the features being the following. A splitting algorithm
is used to decouple advection and diffusion phenomena. Advection phenomena (including
the motion of the volume fraction of liquid and the motion of the fluid) are solved using
a fixed, structured grid of rectangular cells and a forward characteristic method. On the
other hand, diffusion phenomena (more precisely a generalized Stokes problem) are solved
using finite element techniques on a fixed, unstructured mesh. Thus, our numerical method
makes use of the nice features of structured grids in order to solve the advection phenomena
and takes advantage of finite elements in order to solve diffusion phenomena. Again, it
should be stressed that the numerical treatment of advective terms is different than what
is done in VOF-like methods. Our model uses a forward characteristic method instead of
a finite volume (or finite difference) method. The main advantage is that the method is
unconditionally stable with respect to the Courant–Friedrichs–Lewy (CFL) condition, thus
allowing larger time steps to be used. Numerical results are presented for various two-
dimensional situations. Our final goal is to develop a three-dimensional model, and we
believe our numerical method can be easily extended to three-dimensional situations.

The structure of the paper is the following. In the next section, the governing equations and
boundary conditions are presented. In the third section our splitting algorithm is proposed.
The fourth section is devoted to the details of space discretization. In Section five, numerical
simulations are compared to experiments and validate the model. Finally, a conclusion and
perspectives are proposed.

2. THE MATHEMATICAL MODEL

2.1. Governing Equations

The model presented in this section mainly corresponds to the one presented in the original
VOF method [12]. However, as this will be explained in Sections 3 and 4, the numerical
treatment of the model is different.

Let3 be a cavity ofR2 in which the fluid must be confined, and letT > 0 be the final
time of the simulation. For any given timet , let Ä(t) denote the region occupied by the
liquid. Finally, let QT be the space–time domain containing the liquid and let6T be the
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FIG. 1. Calculation domain for the broken dam problem in a confined domain. At initial time, the fluid is at
rest on the left part of the cavity. It is then free to move and hits the boundary.

space–time free surface between the liquid and the surrounding gas. These notations are
reported in Fig. 1 for the broken dam problem in a confined domain.

It is assumed that the velocity fieldv : QT→R2 and the pressure fieldp : QT→R satisfy
the time-dependent, incompressible Navier–Stokes equations in conservative form and in
the presence of a gravity fieldg; that is,

ρ
∂v
∂t
+ ρ(v · ∇)v− 2µ div D(v)+∇ p = ρg in QT , (1)

div v = 0 in QT , (2)

whereD(v)= 1
2(∇v+∇vT ) is the rate of deformation tensor.

Let ϕ :3× (0, T)→R be the characteristic function of the liquid domainQT . The
functionϕ equals one if liquid is present and zero if it is not. Thusϕ(x, t) represents the
volume fraction of liquid at pointx and timet . In order to describe correctly the kinematics
of the free surface6T , the functionϕ must satisfy

∂ϕ

∂t
+ v · ∇ϕ = 0 on6T , (3)

in a weak sense. From a Lagrangian point of view, the functionϕ is constant along the
trajectories of the fluid particles. More precisely,ϕ(X(t), t)=ϕ(X(0), 0), whereX(t) is
the trajectory of a fluid particle, thus satisfiesX′(t)= v(X(t), t). This interpretation will be
used to solve (3), as described in the next section.

The model unknowns arev, p, ϕ and satisfy Eqs. (1)–(3). The model is thus complete
provided initial and boundary conditions are prescribed.

2.2. Initial and Boundary Conditions

The initial conditions are the following. At initial time, the volume fractionϕ is given,
which defines the liquid region at initial time,

Ä(0) = {x ∈ 3;ϕ(x, 0) = 1};

see Fig. 1 for notations. The initial velocity fieldv is then prescribed inÄ(0). Let us now
turn to the boundary conditions for the velocity field. It is assumed that no forces are acting
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on the free surface (capillary forces and forces due to external pressure of the surrounding
gas are neglected); thus the stress is zero on the free surface,

−pn+ 2µD(v)n = 0 on6T ,

wheren is the outward unit normal of the free surface. On the boundary of the liquid region
being in contact with the walls (that is to say the boundary of3; see Fig. 1), three kinds of
boundary conditions can be considered: Dirichlet boundary conditions (corresponding to
noslip or inflow conditions), slip boundary conditions, or zero force boundary conditions.
More precisely, if the fluid pushes against the wall, then slip boundary conditions are
imposed; that is, zero normal velocity and zero tangent stress

if (−pn+ 2µD(v)n) · n < 0 then v · n = 0 and (−pn+ 2µD(v)n) · t = 0,

wheret is a unit vector orthogonal ton. On the other side, if the fluid does not push against
the wall, then the stress is zero:

if (−pn+ 2µD(v)n) · n ≥ 0 then −pn+ 2µD(v)n = 0.

This formulation of the boundary conditions prevents the fluid from sticking to the walls.

3. TIME DISCRETIZATION: A SPLITTING ALGORITHM

A splitting algorithm is used to solve problems (1)–(3), allowing advection and diffusion
phenomena to be decoupled.

Let 0= t0< t1< t2< · · · < t N = T be a subdivision for the time variablet and define
τ n= tn+1− tn to be thenth time step,n= 0, 1, 2, . . . , N− 1. Given an integern, assume that
approximationsϕn−1, vn−1, Än−1 of ϕ(tn−1), v(tn−1),Ä(tn−1), respectively, are known.
Then the approximationsϕn, vn, Än of ϕ(tn), v(tn),Ä(tn), respectively, are computed as
follows.

3.1. Advection Step

Solve between timetn−1 andtn the two advection problems

∂w
∂t
+ (w · ∇)w = 0,

∂ψ

∂t
+ w · ∇ψ = 0,

with initial conditions

w(tn−1) = vn−1,

ψ(tn−1) = ϕn−1.

If the effect of the boundary of the cavity3 is not considered, these two problems can
be solved exactly, using the characteristic method [24–26] since the trajectories of the
velocity fieldw are straight lines. Indeed, they are given byX′(t)=w(X(t), t), but sincew



NUMERICAL SIMULATION OF FREE SURFACE FLOWS 443

is constant along the trajectories, we haveX′(tn−1)=w(X(tn−1), tn−1)= vn−1(X(tn−1)).
Let vn− 1

2 denote the solution of the first advection problem at timetn, i.e.,vn− 1
2 =w(tn),

and letϕn denote the solution of the second advection problem at timetn, i.e.,ϕn=ψ(tn).
We thus have

vn− 1
2 (x + τ n−1vn−1(x)) = vn−1(x), (4)

ϕn(x + τ n−1vn−1(x)) = ϕn−1(x), (5)

for all x belonging toÄn−1. The liquid region at timetn is then defined as the following:

Än = {y ∈ 3;ϕn(y) = 1}.

Note that an adaptive time procedure has been added in order to prevent the trajectories of
the liquid (the characteristics) from crossing the boundary of the cavity3.

3.2. Diffusion Step

Once the advection step has been performed, an intermediate velocityvn− 1
2 is available

on the current liquid domainÄn. It then remains to solve the following generalized Stokes
problem,

ρ
vn − vn− 1

2

τ n−1
− 2µ div D(vn)+∇ pn = ρg in Än, (6)

div vn = 0 inÄn, (7)

with the boundary conditions described in Section 2.2 (Dirichlet, slip, or zero force boundary
conditions).

Let us consider this splitting algorithm in the case when the free surface problem is
skipped, that is to say whenÄ(t)=3 for all t . The model then reduces to the classi-
cal Navier–Stokes equations and the splitting algorithm is closely linked to the so-called
characteristic–Galerkin method [24–26]. The major difference comes from the fact that, in
the characteristic–Galerkin method, the trajectories of the fluid particles are computed in
the direction opposite to the flow. From these considerations, we expect our algorithm to
be O(τ ) convergent, whereτ is the largest time step.

4. SPACE DISCRETIZATION: CELLS AND FINITE ELEMENTS

Our splitting algorithm allowed advection and diffusion phenomena to be decoupled. In
order to take advantage of this situation, two different grids are used for space discretization.
Since finite element techniques are well suited for solving (6) and (7) a fixed, unstructured
mesh of3 (the region in which the fluid is confined) is generated. On the other hand, solving
an advection problem with the characteristic method is an easy task on structured grids. A
rectangular grid containing3, made out of small rectangular cells, will also be needed; see
Fig. 2.
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FIG. 2. The two grids used for the computations. The structured grid of small cells is used for advection
phenomena. The finite element unstructured mesh is used for diffusion phenomena.

4.1. Advection Step

Assume that the grid is made out of rectangular cells, each cell being labeled by indices
i j , as shown in Fig. 3. Letϕn−1

i j andvn−1
i j be the approximate value ofϕ andv at the center

of cell numberi j at timetn−1. According to (4) and (5), the advection step on cell number
i j consists in advectingϕn−1

i j andvn−1
i j by τ n−1vn−1

i j and then projecting the values on the
grid. An example of cell advection and projection is presented in Fig. 3.

Since this algorithm is closely related to the characteristic–Galerkin method [24–26],
it is unconditionally stable with respect to the Courant–Friedrichs–Lewy (CFL) condition
andO(τ + h2/τ) convergent,τ being the largest time step andh being the cells spacing.
However, this algorithm has two drawbacks. Indeed, numerical diffusion is introduced when
projecting the values of the advected cells on the grid. Moreover, if the time step is too large,
two cells may arrive at the same place, producing numerical (artificial) compression; see
Fig. 4.

FIG. 3. An example of advection ofϕn−1
i j by τ n−1vn−1

i j and projection on the grid. The advected cell is
represented by the dashed lines. The four cells containing the advected cell receive a fraction ofϕn−1

i j , according
to the position of the advected cell.
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FIG. 4. An example of numerical (artificial) compression for the broken dam problem in a confined domain.

In order to remedy this situation, two features have been added. The first aims to reduce
diffusion and is inspired from the SLIC algorithm [1, 23]. The second removes artificial
compression. These two features can be understood as post-processing techniques in order
to enhance the quality of the computed volume fractionϕ.

Reducing numerical diffusion: a SLIC algorithm.In order to illustrate numerical dif-
fusion, a simple advection situation is considered. A rectangular liquid domain is advected
in the unit square. The horizontal velocity equals one in the whole liquid region. The time
step is half the space step. Figure 5 represents the computed values ofϕ after two time steps
using the advection algorithm described above. Numerical diffusion is clearly very large.
More precisely, the smaller the time steps, the greater their number, the greater numerical
diffusion. This is a well-known feature of the characteristic method: numerical diffusion
is high with small time steps. Indeed, experimental and theoretical results [24–26] have
shown that the convergence rate of characteristic-like methods depends on the CFL number
(velocity times the time step divided by the cells spacing). A good choice generally consists
in choosing CFL numbers between 1.5 and 5. However, in the frame of free surface flows,
an important point prevents the use of large CFL numbers. Indeed, when the time step is
high, the cells may either be advected outside the cavity3 or induce artificial compression;
see Fig. 4. Thus, a time stepping adjustment procedure has been added. The time steps are
computed so that all the cells remain inside the cavity3. Moreover, a simple line interface
calculation (SLIC) algorithm [1] has been implemented in order to reduce numerical diffu-
sion. The SLIC method allows the position of the free surface to be inside a cell. In Fig. 6,
numerical results are reported when using the SLIC method and should be compared to
those of Fig. 5. Clearly, after two time steps, numerical diffusion has been suppressed.

Reducing artificial compression: a decompression algorithm.We now present an al-
gorithm to reduce artificial compression. When the computed valuesϕn

i j are greater than

FIG. 5. A simple advection situation. The horizontal velocity equals one. The time step is half the space step.
Computed values ofϕ are shown after two time steps.
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FIG. 6. Same as Fig. 5, but using the SLIC algorithm. After two time steps, the position of the liquid region
is exact.

one, a fraction of the liquid contained in the cavity is lost. The aim of the decompression
algorithm is to produce new valuesϕn

i j which are between zero and one.
Consider the test case of the broken dam in a confined domain; see Fig. 1. In Fig. 7,

fictitious values ofϕn
i j are reported at initial time and after a few time steps. Clearly, the

cells close to the bottom right corner have valuesϕn
i j greater than one. Moreover, numerical

diffusion has occurred and some of the cells have valuesϕn
i j between zero and one. The

decompression algorithm is then as follows. At each time step, all the cells having values
ϕn

i j greater than one (strictly) or between zero and one (strictly) are sorted according to
their valuesϕn

i j . This can be done in an efficient way using quick sort algorithms that are
nowadays available on any computer. As shown in Table 1, the cells having valuesϕn

i j

greater than one are called the dealer cells, whereas the cells having valuesϕn
i j between

zero and one are called the receiver cells. The decompression algorithm then consists in
moving the fraction of liquid in excess in the dealer cells to the receiver cells. For instance,
in the situation corresponding to Fig. 7, the excess of liquid of the first dealer cell, cell (8, 1),
is poured into the first receiver cell, cell (8, 2), then into the second receiver cell (8, 3). Note
that if all the receiver cells are full but some liquid is still in excess in the dealer cells, then
this excess of liquid is stored in a dedicated buffer and is introduced at the next time step.
Figure 8 shows the new valuesϕn

i j obtained after the decompression algorithm is performed.
Again, this decompression algorithm is very easy to implement (it requires mainly a call to
a quick sort routine) and we believe it can be used as is for three-dimensional computations.

4.2. From Cells to Finite Elements

Once valuesϕn
i j andvn

i j have been computed on the cells, values have to be extrapolated
at the nodes of the finite element mesh. Then, from these values, the new liquid region will

FIG. 7. The broken dam problem in a confined domain. Computed values ofϕn
i j at initial time (left) and after

a few time steps (right).
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TABLE 1

The Decompression Algorithm: Sorting of the Cells in the

Situation Corresponding to Fig. 7, where the Dealer Cells

(left) Give Their Surplus of Liquid to the Receiver Cells

(right)

Dealer cells:ϕn
i j > 1 Receiver cells: 0<ϕn

i j < 1

Index i Index j ϕn
i j Index i Index j ϕn

i j

8 1 1.2 8 2 0.9
7 1 1.1 8 3 0.8

7 3 0.6
· · · · · · · · ·

be computed, and problems (6) and (7) will be solved. For any internal node (vertex)P of
the finite element mesh letϕn

P be the approximate value ofϕ at timetn. Let Cn
i j be the cell

whose center is nearest to nodeP; see Fig. 9. Then, the value ofϕn
P is computed from the

following formula:

ϕn
P =

1

16

(
4ϕn

i, j + 2ϕn
i, j−1+ 2ϕn

i+1, j + 2ϕn
i, j+1+ 2ϕn

i−1, j + ϕn
i−1, j−1

+ϕn
i+1, j−1+ ϕn

i+1, j+1+ ϕn
i−1, j+1

)
.

This formula is borrowed from multigrid techniques and is a nine-point restriction operator
[9]. When the nodeP belongs to the boundary of the calculation domain, a similar formula
can be derived, involving only the cells which are inside the calculation domain. Finally,
the same method is used to compute the momentumϕn

Pvn−1/2
P . Then, dividing byϕn

P, the
value ofvn−1/2

P is obtained.

4.3. Diffusion Step

Once values of the velocity fieldvn− 1
2 and the volume fractionϕn are available at the

vertices (nodes) of the finite element mesh, the liquid region is defined as follows. An
element of the mesh is said to be liquid if (at least) one of its verticesP has a value
ϕn

P > 0.5. The computational domain used for solving (6) and (7) is then defined to be the
union of all liquid elements; see Fig. 10.

FIG. 8. Values ofϕn
i j after the decompression algorithm.
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FIG. 9. The nine cells involved in the computation of the volume fractionϕ at nodeP.

Note that a velocity has to be guessed for each node havingϕn
P = 0, but belonging to a

liquid element. The velocity is then clearly computed from the values of the neighboring
liquid nodes. Also note that if a cell has a valueϕn

i j greater than zero, but belongs to a finite
element which is not liquid, then it is eliminated from the computations and a small amount
of liquid is lost. When this situation occurs, the corresponding amount of liquid is stored
in a dedicated buffer and is introduced at the next time step, during the decompression
algorithm of Section 4.1.

Let us now turn to the finite element techniques used for solving (6) and (7), the boundary
conditions being those described in Section 2.2 (Dirichlet, slip, or zero force boundary
conditions). Two finite elements methods have been employed, the first being the popular
Q1−P0 element (continuous, piecewise bilinear velocity on quadrangles, constant pressure)
[6, 28, 29]. Penalty methods are used to eliminate the pressure (with, as usual, reduced
quadrature formula) and to implement the slip boundary conditions. The degrees of freedom
are the velocity components at each node of the finite element mesh. At each time step, a
linear system has to be solved in order to obtain the velocity components at each node of

FIG. 10. An example of the computation of the liquid region, given the values ofϕ at the vertices of the finite
element mesh.
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the finite element mesh. The second finite element we have implemented is theP1− P1
stabilized element (continuous, piecewise linear velocity and pressure on triangles, plus a
Galerkin/least-squares stabilization method) [7, 8, 33]. Then, the degrees of freedom are the
velocity components and pressure at each node of the finite element mesh. Both these finite
element methods are implicit andO(H2+ τ) convergent (in theL2 norm), H being the
finite elements spacing andτ the greatest time step. At the moment, all the linear systems
are solved using direct methods. We are looking forward to using the P1-P1 stabilized finite
element for three-dimensional computations, with a splitting method to decouple velocity
and pressure computations and conjugate gradient solvers.

5. NUMERICAL RESULTS

In this section, the efficiency of our numerical model is demonstrated on three different
test cases.

5.1. The S-Shaped Channel

The first test case corresponds to water entering an S-shaped channel lying between
two horizontal planes, so that gravity has no effect. Experimental and numerical results are
available [30]. The dimensions of the channel are 0.17× 0.24 m, water is entering at velocity
8.7 m/s, and the density and viscosity are taken to beρ= 1000 kg/m3,µ= 0.01 kg/(ms). This
complex test case enables us to validate the algorithms of Section 4.1 (SLIC, decompression)
and to compare the two finite element formulations.

When the SLIC and the decompression algorithms are turned off, a large number of
cells must be used to obtain precise results [5]. If the SLIC algorithm is turned on and
decompression off, then numerical diffusion is reduced. However, the possible overlapping
of cells (numerical compression) is not eliminated. Finally, the use of both algorithms allows
coarse grids of cells to be used. Roughly speaking, the cell’s spacing can be chosen to be a
third of the finite element’s spacing. Then, the CPU time and the memory requirements are
reduced.

We now compare the results obtained when using the two finite element formulations.
Two sets of results are presented, the first one corresponding to theQ1 − P0 formulation
and the second one to theP1−P1 stabilized method. The corresponding results are reported
in Fig. 11. The time step was 7· 10−5 s and 214× 303 rectangular cells were employed.
The mesh data and the CPU time (on a 195 MHz R10000 SGI workstation) are reported in
Table 2. The CPU time is lower when using theQ1− P0 element, this being due to the fact
that the pressure is eliminated from the linear system. Note that most of the CPU time is
used for solving the linear system corresponding to the discretization of Stokes problem.

TABLE 2

S-Shaped Channel: Mesh Data and CPU Time

Finite element Q1− P0 P1− P1

Number of elements in the mesh 3359 6362
Max. number of degrees of freedom 2× 3095 3× 3453
CPU time (minutes) 16 96
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FIG. 11. S-shaped channel: numerical (P1− P1: left, Q1− P0: middle) and experimental (right) [30] results
at times 7.15, 25.3, 39.3, and 53.6 ms.

The Reynolds number is of order 105, and the flow is clearly turbulent. For computational
reasons (remember that our final goal is to develop a three-dimensional model) we do not
want to introduce a turbulence model. Moreover, the boundary conditions at the border of
the cavity3 are slip conditions, except on the free surface and on the inlet. This explains
the fact that the fluid front obtained with our model is slightly faster than the experimen-
tal one.

Also, it must be mentioned that some of the air cavities observed in the experiments
disappear in our simulations. We believe that this is due to the fact that the pressure of the
surrounding gas is not taken into account. Nevertheless, the two simulations are closed to
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FIG. 12. Disk with core: the meshes.

experiments and similar to the numerical results reported in [30] when using the RIPPLE
code [14].

5.2. The Disk with Core

Consider the filling of a disk with a core, lying between two horizontal planes, so that
gravity has no effect. Experimental and numerical results are available [30]. The dimensions
are 0.14× 0.16 m, water is entering at velocity 18 m/s, and the density and viscosity are
taken to beρ= 1000 kg/m3,µ= 0.01 kg/(ms). For symmetry reasons, the computations are
performed on the half disk. In order to study the convergence of our model, three meshes
are used; see Fig. 12. The finite element is theQ1− P0 element and the relevant data are
reported in Table 3. The convergence of our scheme is illustrated in Fig. 13. Again, the
computed liquid regions match the experimental ones. Similar results have been obtained
when using theP1− P1 stabilized element.

5.3. The Broken Dam Problem in a Confined Domain

Consider a rectangular water columna= 0.05715 m wide and 0.1143 m high. At initial
time, this water column is kept in the left side of a cavity 0.3 m wide and 0.1143 m high by
a fictitious wall (a dam for instance). The wall is then removed (the dam collapses) and the
column is subject to vertical gravity and free to move. The gravity field isg= 9.81 m/s2

TABLE 3

Disk with Core: Numerical Data

Mesh Coarse Medium Fine

Number of elements 322 1288 5152
Number of cells 32× 74 64× 148 128× 296
Time step (s) 0.0002 0.0001 0.00005
Number of time steps 83 165 330
CPU time (minutes) <1 2 37



452 MARONNIER, PICASSO, AND RAPPAZ

FIG. 13. Disk with core: numerical results at times 8.8, 11.8, and 16.2 ms, for the three different meshes:
(a) coarse grid, (b) medium grid, (c) fine grid, and (d) experimental results [30].

and the density and the viscosity of the fluid areρ= 1000 kg/m3, µ= 0.5 kg/(ms). Three
meshes are used for this analysis, the data being reported in Table 4. Experimental [18]
and numerical [10, 12, 13, 16] results are available. The position of the leading fluid front
versus time is reproduced in Fig. 14. Again numerical results match the experiments.

Figure 15 represents the liquid region at several times, for a 0.09× 0.045 m cavity and
a rectangular water column 0.04× 0.03 m. It can be seen that the free surface has a well-
behaved undular shape.

TABLE 4

The Broken Dam Problem in a Confined Domain: Numerical Data

Mesh Coarse Medium Fine

Number of elements 37× 15 75× 30 150× 60
Number of cells 370× 150 750× 300 1500× 600
Time step (s) 0.03 0.015 0.0075
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FIG. 14. The broken dam problem in a confined domain: dimensionless front position versus dimensionless
time.

6. CONCLUSION

A numerical model for solving complex flows with free surfaces has been presented.
The mathematical model is borrowed from the VOF method and makes use of the volume
fraction of liquid in order to compute the position of the free surface. However, the numerical
schemes are different than those used in the VOF method. A splitting algorithm is used to
decouple advection and diffusion phenomena. Advection is solved on a structured grid
made out of small rectangular cells. Diffusion is solved using a finite element method and
an unstructured mesh.

Numerical results show the efficiency of this approach and the numerical results match
experimental ones. We are looking forward to including the effects due to the surrounding
gas and surface tension [2] in order to improve the model.

However, the prime goal of our future research is to extend this model to three-dimensional
computations.

FIG. 15. The broken dam problem in a confined domain: the liquid region at times 0.02, 0.05, 0.25, and 0.30 s.
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